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Abstract

Background: Cotton with coevolving pests has been grown in India more than 5000 years. Hybrid cotton was
introduced in the 1970s with increases in fertilizer and in insecticide use against pink bollworm that caused outbreaks
of bollworm. Hybrid Bt cotton, introduced in 2002 to control bollworm and other lepidopteran pests, is grown on
more than 90 % of the cotton area. Despite initial declines, year 2013 insecticide use is at 2000 levels, yields plateaued
nationally, and farmer suicides increased in some areas. Biological modeling of the pre-1970s cotton/pink bollworm
system was used to examine the need for Bt cotton, conditions for its economic viability, and linkage to farmer suicides.

Results: Yields in rainfed cotton depend on timing, distribution, and quantity of monsoon rains. Pink bollworm causes
damage in irrigated cotton, but not in rainfed cotton unless infested from irrigated fields. Use of Bt cotton seed and
insecticide in rainfed cotton is questionable.

Conclusions: Bt cotton may be economic in irrigated cotton, whereas costs of Bt seed and insecticide increase the risk
of farmer bankruptcy in low-yield rainfed cotton. Inability to use saved seed and inadequate agronomic information trap
cotton farmers on biotechnology and insecticide treadmills. Annual suicide rates in rainfed areas are inversely related to
farm size and yield, and directly related to increases in Bt cotton adoption (i.e., costs). High-density short-season cottons
could increase yields and reduce input costs in irrigated and rainfed cotton. Policy makers need holistic analysis before
new technologies are implemented in agricultural development.

Keywords: Ecological disruption; Bt cotton; Weather; Yields; Suicides; Bio-economics; Physiologically based demographic
models; GIS; Climate change
Background
Native diploid “Desi” cottons (varieties of Gossypium
arboreum L. and G. herbaceum L) have been grown in
India for more than 5000 years without synthetic inputs
[1] (i.e., functionally whether or not certified organic-
ally). Cotton was also domesticated in Africa and the
Americas, and for all but the past 180 years, India was
the center of world cotton innovation (see Additional
file 1 for a review of the agronomic and political history).
Cotton was the target of strong selection and adaptation
by Indian farmers, but several agronomic changes altered
the ecology and economics of cotton production in India
as cotton became the raw material for the world’s largest
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manufacturing industry—cotton textiles through the first
half of the Industrial Revolution [1]. Starting in 1790, new
world cottons (chiefly G. hirsutum L. and later G. barba-
dense L.) were introduced [2] with F1 hybrid cotton (nor-
mally G. hirsutum) introduced in the 1970s [3] ushering
in high use of insecticide and fertilizer [4, 5]. Planting of
transgenic (i.e., genetically modified) F1 hybrid Bt cottons
expressing endotoxins of the soil bacterium Bacillus thur-
ingiensis for control of lepidopteran pests began in 2002
[6], and by 2012, more than 1128 Bt hybrid varieties of
variable quality were planted on 92 % of the cotton area
[2, 7]. Seed from F1 hybrid plants are fertile but are not
usually saved for planting by farmers because they pro-
duce variable phenotypes, and hence seed must be pur-
chased annually.

Cotton pests
Worldwide, cotton is attacked by ecologically similar
complexes of insect herbivores (see Additional file 1). In
article distributed under the terms of the Creative Commons Attribution License
hich permits unrestricted use, distribution, and reproduction in any medium,
.
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India, before the widespread use of insecticide, the key
pest of cotton was the cosmopolitan stenophagous semi-
tropical pink bollworm (Pectinophora gossypiella Saun-
ders; hereafter pink bollworm (PBW))) and also generalists
such as jassids (Amrasca biguttula Ishida), spotted boll-
worm (Earias vitella Fabricius), and defoliators such as
Spodoptera litura (Fabricius) [8, 9]. PBW is thought to be
of South Asian, Papua New Guinea, and North Australian
origins [10] and historically has been a pest in long-season
cotton grown more than 180 days [2]. Natural control of
PBW is weak, and it can cause high late-season damage if
not controlled.
Before the introduction of Bt cotton, insecticide was

used to control pink bollworm, and as has occurred
worldwide wherever PBW infests cotton, insecticide use
caused ecological disruption due to the destruction of
generalist natural enemies resulting in the resurgence of
PBW, outbreaks of formerly secondary pests, insecticide
resistance, and adverse ecological and human health effects
[11–13]. In India, pesticide use in all crops peaked in the
1990s at 75,000 metric tons of active ingredient. Insecti-
cides were 80 % of this total, and 40 to 50 % was applied to
cotton [9]. The use of pyrethroids and organo-phosphate
insecticides induced outbreaks of the polyphagous boll-
worm (Helicoverpa armigera (Hübner)), whitefly (Bemisia
tabaci (Gennadius)), and other pests [9] that proved more
damaging and difficult to control than PBW [8, 9]. Prior
to the 1970s, when high insecticide use began, bollworm
and whitefly were minor pests in Indian cotton, but by
2002, when Bt cotton was introduced, 75 % of insecticide
use in cotton was for bollworm control [14]. Insecticide
resistance was found in the defoliator S. litura in the late
1980s and in several other pests including pink bollworm
and bollworm in the 1990s [14]. The inescapable conclu-
sion is that Bt cotton was introduced to India to solve a
bollworm problem created by insecticide use [9, 14].
The introduction of Bt cotton generated considerable

controversy [15, 16] as some linked high suicide rates
among cotton farmers to Bt cotton adoption [17] while
others dismissed the links [18, 19]. Unrealistic claims of
70–80 % increases in yield [20], and 17–20 % increases
nationally [18, 19, 21] entered the literature with some
questioning these conclusions [22]. The above biology
and controversy are imbedded in the historical eco-
nomic, political, social (religion, caste, level), and eco-
logical milieu of rural India and are background for our
analysis of cotton production in India [23].
Because insecticides induce outbreaks of bollworm and

other secondary pests (see Additional file 1), we first as-
sess the historical baseline relationship of non-Bt cotton
and PBW to understand the ecology of cotton production
in India before heavy pesticide use and bollworm out-
breaks began. In the process, we explain why despite con-
jectured high pest pressure, organic cotton continues to
be grown in India. In order, the distribution of cotton in
India is reviewed, and the ecology of irrigated and rainfed
non-Bt cotton and PBW is examined in detail using the
Yavatmal district, Maharashtra (MH) state, in central India
as an example. The analysis is then extended to rainfed
cotton across the agro-ecological zones of India with spe-
cial focus on the central and southern states of Andhra
Pradesh (AP), Gujarat (GJ), Karnataka (KA), and Maha-
rashtra (MH) where rainfed cotton predominates and
where most of the farmer suicides have occurred. The
study assesses the effects of weather on cotton yield and
on risk. Three interrelated issues are addressed: was Bt
cotton in irrigated and rainfed areas needed to solve pest
problems, does it give economic benefits, and is its adop-
tion linked to increases in farmer suicides.

Results
Distribution of cotton
The distribution of cotton across India is summarized in
Fig. 1a, average yields in Fig. 1b, and the areas of irrigated
and rainfed cotton in Fig. 1c, d, respectively [24, 25]. Most
cotton in India is rainfed (Fig. 1d, e) with higher rates of ir-
rigated cotton planted in the states of Punjab (PJ), Haryana
(HR), and Rajasthan (RJ) (see map Fig. 1c, e). Cotton in AP,
GJ, KA, and MH is mostly rainfed, but some irrigated cot-
ton is also grown (see Fig. 1c vs. 1d).

Irrigated non-Bt cotton at Yavatmal
The biology of irrigated non-Bt cotton and PBW dynam-
ics are simulated for Yavatmal, MH (symbol • in Fig. 1e;
Fig. 2) on a daily basis using 2005–2010 weather to illus-
trate the level of detail computed for all areas of India
(see “Methods”; Additional file 1). Soil fertility and water
are assumed not limiting with prospective yields being a
function of temperature and solar radiation. We note
however that most of the irrigation water in south-
central India is from tube wells that access hard rock
aquifers, the recharge of which is likely slower than the
use rate and hence may not be sustainable [26]. Irrigated
cotton has two or more fruiting cycles (Fig. 2a) and can
produce high yields (Fig. 2b). For convenience, the simu-
lations were terminated on 31 December each year.
Dormancy in larvae evolved to enable PBW to bridge

yearly crop cycles [27–29] (Fig. 2c) resulting in the popu-
lation dynamics illustrated in Fig. 2d. The rate of dor-
mancy induction is a function of temperature and day
length (Fig. 2e) with the stippled area indicating the par-
ameter space for PBW at Yavatmal [28]. Temperatures
drop with the onset of the monsoon season (see Fig. 3a, b)
that along with decreasing day length increases dormancy
rates in PBW (see Additional file 1). PBW adults emerge
from winter dormancy during spring through midsum-
mer; this adaptation is well timed to exploit fruiting in irri-
gated cotton (Fig. 2c). Infestation of fruit begins in late



Fig. 1 Cotton production in India: a the proportion of land planted to cotton, b lint cotton yield (tons/ha), and c the fraction of irrigated and d
rainfed cotton as a fraction of the 10 × 10 km cell raster data [24, 25], and e the major cotton producing states. Black dot symbol in Fig. 1e
indicates the location of Yavatmal, MH.
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May–June and results in heavy late-season damage (Fig. 2d).
Several larvae may develop per mature fruit with the pro-
portion reduction in lint yield being 0 ≤ ϕ = 0.061mean
larvae/boll < 1 [30]. As occurs in other areas of the
world, insecticide use to control PBW in India induces
outbreaks of bollworms, defoliators, whiteflies, and other
pests [29, 31–34].

Rainfed non-Bt cotton at Yavatmal, MH
At Yavatmal, the time and intensity of the monsoon
rains (Fig. 3b, c) determine the time and success of seed
germination, season length, and yield (Fig. 3d). Soil fer-
tility is assumed not limiting, whereas available soil
moisture is shown in Fig. 3c with the horizontal dashed
line indicating the wilting point. For example, early
monsoon rains during 2001 germinated the seed but
were insufficient to sustain full growth with water stress
during July slowing plant growth (Fig. 3d). Late rains in
August 2001 were not timely enough for the crop to re-
coup yield potential. Water stress also occurred during
2002 and 2003 and influenced yields. Emergence of
PBW adults from dormancy during spring and summer
is poorly timed with cotton fruiting, and sizeable PBW
populations failed to develop (not shown).
Prospective yields during 1979 to 2010 are summa-

rized in Fig. 4a with degree days (dd) above 12 °C
and total rainfall indicated. The variable dd is the
sum of daily degrees of temperature above the devel-
opmental threshold for cotton of 12 °C (i.e., physio-
logical time) during the growing period. Predicted
yields and lack of sizeable PBW populations (not
shown) accord qualitatively with long-run field studies
on rainfed cotton at Nagpur, MH, roughly 100 km to
the NW of Yavatmal [5, 35]. Multiple regression of
yield on rainfall and dd indicates that only rainfall
was a significant predictor of yield at Yavatmal that



Fig. 2 Simulation of irrigated non-Bt cotton at Yavatmal, MH (78° 9′ E, 20° 10′ N), during the period 2005–2010: a average buds, green bolls, and open
bolls per plant for six plants m−2, b lint cotton yields (kg/ha), c pink bollworm dormancy, d average PBW dynamics per plant, and e PBW dormancy in
response to day length and temperatures [28] showing the parameter space for daily dormancy induction at Yavatmal (shaded area). Results for 6 of
the 31 years are illustrated. The small down arrows in Fig. 2a, d indicate 1 July of each year
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Fig. 4 Simulated annual yields of rainfed non-Bt cotton at Yavatmal, MH, during 1980–2010: a lint cotton (kg/ha, bars), degree days (>12 °C, dashed
line), and mm rainfall (gray solid line) during the season, and b linear regression of yield on mm rainfall (see text)

Fig. 3 Simulation of rainfed non-Bt cotton at Yavatmal, MH (78° 9′ E, 20° 10′ N) for the period 1995–2010: a mean daily temperature and b daily rainfall,
c available soil water in the root zone, and d simulated fruiting dynamics per plant at a planting density of six plants m−2 (see location symbol black
circle in Fig. 1). The horizontal dashed line in Fig. 3c is the wilting point. Results for 16 of the 31 years are illustrated
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averaged 521kg lint cotton ha−1 (SD = +212.1) (Fig. 4b; Eq.
1).

y ¼ −111:2þ 0:573rainfall
df ¼ 29; r2 ¼ 0:509; t ¼ 5:49

ð1Þ

Pest interactions between irrigated and rainfed cotton
Some irrigated cotton is grown in predominantly rainfed
areas such as Yavatmal (Fig. 1), and PBW populations
building up in irrigated fields can then invade rainfed
cotton (Fig. 5) and multiply further. This may amplify
feedback between the two systems, encouraging pesti-
cide use in both that induces secondary pests such as
bollworm regionally. Although PBW adults are not
strong fliers, adult moths are known to disperse long
distances in the southwest USA on North American
monsoon winds [36], and similar monsoon dispersal
likely occurs in India.

Rainfed cotton production in India
In this section, we first assess rainfed cotton production
across the agro-ecological zones of India and then focus
on the states of AP, GJ, KA, and MH.
Prospective average yields of rainfed cotton across

India during 1980–2010 and coefficients of variation
(CV) as a percent are shown in Fig. 6a, b, respectively,
with average annual rainfall illustrated in Fig. 6c. Mul-
tiple regression of average rainfed yields (data from
Fig. 6a) on total degree days during the growing season
(dd > 12 °C, t = 7.34), rainfall (t = −13.83), and the inter-
action term dd × rainfall (t = 35.12) is summarized by Eq. 2.
Fig. 5 Simulated phenology of cotton fruiting and PBW in irrigated and ra
rainfed cotton during late summer is indicated by the broad arrow
y ¼ 78:72þ 0:0593dd −0:1303rainfall þ 0:000153dd

� rainfall
F ¼ 2836 ; df ¼ 2835; R2 ¼ 0:75

ð2Þ

Rainfed yields increase with dd and the interaction
dd × rainfall, but decrease with rainfall (Eq. 2). In the ab-
sence of pests and using average values (dd = 2361, rain-
fall = 1430 mm), marginal analysis (dy/dxi) suggests that
rainfall contributes 0.230 kg ha−1 mm−1 of rain to poten-
tial yield given the average effects of dd, while dd con-
tributes 0.278 kg ha−1 dd−1 given the average effects of
rainfall.
Average yields for AP, GJ, KA, and MH and India (not

shown) are inversely related to the CV (Figs. 7a–d). As a
metric of weather-related risk, we define high-risk areas
as having average yields <500 kg ha−1 and CV >50 %.
Using this metric, GJ has relatively few high-risk areas,
KA has a large number, and AP and MH are intermedi-
ate. In MH, ~90 % of farmers grow some cotton, and
about 40 % of the state has CVs >50 % (see insets
Fig. 7d). The relative level of risk for each state (i.e.,
GJ<MH<AP≪KA) is reflected in the state’s production
as a percentage of national cotton production. Specific-
ally, during 2002–2011, production in GJ ranged from
24 to 39 %, 15 to 26 % in MH, 13 to 19 % in AP, and
only 2 to 4 % in KA [37]. This metric of risk could also
apply to other rainfed crops.

Discussion
Here we review some economic studies on the benefits of
Bt cotton adoption, the biological and ecological under-
pinnings of the Indian cotton system, and the question of
infed cotton at Yavatmal, MH, during 2005. The movement of adults to



Fig. 6 Simulated rainfed yields for the period 1980–2010 across India: a average yield, b the coefficient of variation (CV) of yield, and c average
annual rainfall (mm).
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whether the Bt cotton technology was needed, under what
conditions might it give economic benefits, is its adoption
linked to farmer suicide, who might profit from Bt cotton
adoption, and lastly how climate change will impact
rainfed cotton production.

Review of the economics of Bt cotton adoption
Numerous economic studies based on field experiments
and survey data have found economic benefits for Bt
cotton adoption in India [38], and yet, controversy per-
sists (see the cogent expośe by Stone [39]). Econometric
analyses ignore the underpinning ecology of the system
and disregard underlying agro-ecological principles of
yield formation (see Additional file 1) [40]. In particular,
prior economic studies of Indian cotton compared the
Fig. 7 Regressions of average rainfed yield (kg/ha) on the coefficient of variat
The right inset map for Maharashtra shows the geographic distribution of CV
Yavatmal, MH, is indicated in Fig. 7d and the upper inset by symbols red circle
failed insecticide technology to the Bt technology option,
ignoring the question of whether either technology was
needed in the first place. Econometric analyses tell little
about the root causes of the problem being evaluated or
alternatives to the current production system and, most
important, provide little insight into what is foremost
an ecological problem with economics superimposed
[16, 41]. Specifically, studies in ecologically disturbed en-
vironments limited to isolated small plots typical of pub-
lished results from India, rather than in larger landscape
and historical frameworks, are known to bias results
against untreated checks (see [34, 42–44]), inputs such
as fertilizer and water are often not experimentally con-
trolled [45], in south-central India, ground water is being
used unregulated and unpriced [26], industry data have
ion (%) for a Andhra Pradesh, b Gujarat, c Karnataka, and d Maharashtra.
while the histogram shows the frequency of the different CV categories.
and black circle, respectively
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been used to predict unrealistic estimates of potential
yield [20], and generally, important agronomic aspects of
the systems (e.g., irrigated vs. rainfed, planting density, var-
ieties, pest dynamics, etc.) and the crucial effects of wea-
ther are ignored. For example, higher yields were found
for Bt compared to conventional cotton [46], but in cri-
tique of this and related studies, a high degree of variation
in productivity and profits with other social and economic
explanations was found for yield differences including a
“placement bias” of irrigation and “good growing condi-
tions” [22]. Insecticides continue to be used in Bt cotton
in India, and as in China productivity effects of Bt cotton
and pesticide use likely depend on the action of natural
control agents with the profitability of damage control
measures increasing with the severity of ecosystem disrup-
tion due to insecticides [47].

Biological and ecological underpinnings
Economic analyses commonly assume that cotton pests
must be controlled to prevent economic losses. However,
in an 11-year study of rainfed cotton at Nagpur, MH, India
(near Yavatmal) using the non-Bt G. hirsutum hybrid
NHH-44 under organic and conventional practices, Blaise
[5] found higher yields and lower pest damage in organic
cotton. Fundamental to understanding this result is that an-
nual emergence of the key pest PBW in spring is poorly
timed to attack rainfed cotton and absent high inoculum
from irrigated cotton (Fig. 5), large PBW populations fail to
develop in non-Bt rainfed cotton. This biology reduces and
usually obviates the need for Bt cotton and disruptive insec-
ticides (see Figs. 3 and 5), thus avoiding ecological disrup-
tion and outbreaks of bollworm and other secondary pests
(sensu [11]) that may be far more damaging and difficult to
control than PBW [8, 9]. Prior to 1970, bollworm was not
an important pest in Indian cotton [48].
That insecticide can induce pest outbreaks in Indian cot-

ton has abundant parallels worldwide [11, 12, 34, 47, 49–51].
A well-documented example is irrigated industrial cot-
ton in the Central Valley of California during the 1960s
and 1970s. While PBW is limited there by winter tem-
peratures [52], insecticide was used to control a pre-
sumed pest, the plant bug Lygus hesperus Knight. The
insecticide induced severe outbreaks of bollworm, defo-
liators, and the resurgence of Lygus [34, 51, 53–55] (see
Additional file 1), and the studies over several years
showed that compared to the insecticide treatments,
higher yields of the same quality accrued in the very
large untreated check areas [34, 51]. Central Valley
farmers had been spending money on insecticide to lose
money on lower yields causing economist U. Regev [56]
to call this the first documented case of market failure
in pest control [6]. Bt cotton has not made inroads in
the Central Valley of California though herbicide toler-
ant cotton is grown [52].
More germane to India is irrigated cotton in the desert
valleys of southern California and Arizona where the in-
vasive PBW caused heavy losses during the mid-1970s
to the mid-1980s, and insecticide use for its control
caused severe outbreaks of bollworms, budworms, defo-
liators, and whiteflies [11, 27, 57]. The problem was ini-
tially solved using high-density short-season cotton that
produced high yields, but the technology requires early
crop termination and plowing of the stubble to destroy re-
sidual dormant PBW populations (see Additional file 1)
[32]. Short-season cotton was replaced by fertile Bt cotton
despite no increases in yield because implementation re-
quirements were less stringent, it gives excellent control
of PBW [58], and in an industrial setting, the costs of the
Bt technology are an acceptable cost-effective alternative
to short-season cotton (see Additional file 1). Bt cotton is
“softer” on natural enemies than insecticides [59, 60] en-
abling reductions in insecticide use [61] that allows sec-
ondary pests (e.g., bollworms, budworms, whiteflies) to
recede to prior low pest status [33]. Though not signifi-
cantly different, mean natural enemy densities in Bt cotton
are consistently lower than those in unsprayed non-Bt cot-
ton [62], and the efficacy of some natural enemies is re-
duced when feeding on Bt-intoxicated prey [63, 64]. For
pests such as bollworms and defoliators having high re-
productive capacities (500–1000 eggs/female/week) or
pests with high tolerance to Bt toxins (e.g., plant bugs,
whiteflies, and mealybugs), a small reduction in natural
enemy density and efficacy may increase pest density and
trigger insecticide use and ecological disruption [33]. Plant
bugs have increased in Bt cotton in China and the USA,
but this has been dismissed as due to reduced pesticide
use [58, 65–67], despite strong evidence that insecticide
use increases plant bug resurgence [33, 55] (see
Additional file 1). In India and Pakistan, sucking insect
pests had been of minor concern in cotton but are now
increasing in Bt cotton and contribute to yield losses
and increased insecticide use [68, 69].
In sharp contrast to industrial cotton farms globally,

most Indian cotton farms in south-central India are
<1 ha and are rainfed. Furthermore, F1 Bt hybrids are
sold as a value-capture mechanism to discourage seed
saving by millions of small farmers who cannot be con-
trolled by threats of lawsuits as occurs in industrial agri-
culture in more developed areas. Single toxin hybrids
may produce 25 % non-Bt seeds and 6.25 % in two toxin
hybrids with the seasonal expression of Cry2Ab having a
wide range with the levels being tenfold higher than for
Cry1Ac [7]. Quality control of Bt seed in India is lax [2];
resistance to Bt occurs in PBW [70–72] and in bollworm
[2, 73, 74]; and as elsewhere susceptibility to Bt toxins
varies greatly among pests (Additional file 1) with in-
secticide resistance in Bt tolerant pests further compli-
cating pest control [9, 14]. Insecticide use, while initially
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lower in Bt cotton, has greatly increased against sucking
pests [69, 75] (Additional file 1: Table S1)
The need for Bt cotton in India must be reevaluated

on biological and economic grounds [69] using properly
unbiased field experiment unfettered by onerous corpor-
ate intellectual property constraints. These constraints
were outlined in a 2009 letter to the US Environmental
Protection Agency from 26 leading university entomolo-
gists from the US corn-belt protesting the restricted access
to GMO seeds for experimental purposes: “…No truly in-
dependent research can be legally conducted on many
critical questions involving these [GMO] crops” [76]. Cor-
porate intellectual property constraints on GMO crops are
an impediment worldwide to system-level analysis.

Does Bt cotton provide economic advantage?
Average profits per ha in rainfed cotton are computed as
revenues from the sale of seed cotton minus average
costs of seed, insecticide, and other production costs.
On the revenue side, during 2002 to 2013 cotton prices
(e.g., Bengal Desi) ranged from Rs 1875 to 4583/100 kg
of seed cotton (i.e., ~$0.31–$0.75/kg assuming Rs 61 per
$) [37]. A midrange value of $0.51/kg is used in our cal-
culations. Prior to the advent of hybrid varieties, seed
costs were nil to low (Rs 8–9/kg), but as fertile local var-
ieties became unavailable, farmers increasingly bought F1
hybrid seed that for Bt varieties cost ~Rs 2111 per kg.
Two kg of seed are required at traditional planting dens-
ities of two plants/m2 (~$69 ha−1), but optimal planting
densities may be threefold or much higher, depending on
the variety (see Additional file 1). At the traditional
Fig. 8 Cotton yields, revenues, and costs in rainfed cotton areas of AP, GJ, KA
1980–2010, and revenues per hectare corrected for seed and insecticide cost
cotton yields (kg/ha). Costs of production as a percentage of total revenues
density, the cost of seed plus insecticide was Rs 5500 ha−1

(~$90 ha−1) for both Bt adopters and non-adopters [46]
with an additional Rs 5386 for other production costs
[43]. These prices vary in time and region, and hence, they
must be viewed as reference values.
Observed average yields for rainfed cotton in the four

target states ranged from 300 kg ha−1 to 1200 kg ha−1

lint cotton with yields in a few districts of AP and KA
exceeding 1200 kg ha−1 [35]. Note that lint cotton is
roughly 30–35 % by weight of seed cotton. In the ab-
sence of pest damage, average simulated rainfed yields
for AP, GJ, KA, and MH accord with these values
(Fig. 8a) with roughly half of the area producing less
than 500-kg lint cotton ha−1 (Fig. 8b). (Yields in irrigated
cotton would be at or above the upper end of this
range.) Total costs of production for the small propor-
tion of rainfed farms with yields of 1320-kg cotton ha−1

are ~8 % of the revenues. In contrast, production costs
for farms with yields of 500 kg ha−1 are ~21.1 % of the
total revenues resulting in a net income <$2 day−1 ha−1

farmed. At 250 kg ha−1, costs consume ~42.2 % of the
revenues resulting in a net income of <$1 day−1 ha−1

(see Fig. 8a). Costs as a proportion of revenues decrease
exponentially with increasing yields (9200yield− 0.965)
becoming 100 % at ~78.5-kg lint cotton ha−1.
In rainfed areas, low yields and high variability are

substantial sources of risk [22, 77] (see Figs. 4 and 7),
with the high costs of Bt cotton seed and continued use
of insecticide being added destabilizing factors. Debt has
long been a dominating factor in Indian agriculture, and
recently, official sources of credit have greatly decreased,
, and MH: a geographic distribution of average lint cotton yields during
s [46] and other costs of productions [43]; and b a histogram of lint
are in parentheses in legend for Fig. 8a
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and usury costs (5–10 % per month) to money lenders
and others sources have become an added burden for poor
farmers seeking to fund new technology adoption [23].

Did Bt cotton increase yield?
Bt cotton is not a yield enhancing technology, rather, it
is designed to protect the yield potential of the variety
that carries the trait from damage from some but not all
lepidopteran pests (see above and Additional file 1).
Average yields for India during 1975–2007 are illustrated
in Fig. 9a with the apparent increase in the national
average after 2004 attributed to Bt cotton adoption [19],
despite the fact that the adoption rate was only 8 % in
2005 and 42 % in 2006 [78], that government subsidies
for fertilizer (primarily urea) during 2003–2011 in-
creased approximately fivefold (i.e., 110 to 600 billion Rs
or about US$2 to 10 billion) [79], that data from irrigated
and rainfed cotton were conflated in the average, and that
agronomic practices and varieties were improving (see
below). Variety improvements, fertilizer, rainfall amount
and time, reduced pesticide use, and changes in planting
densities can have large effects independent of the Bt tech-
nology. The large effects of genotype × spacing in rainfed
cotton were demonstrated using fertile non-Bt G. hirsu-
tum and Desi (G. arboreum) varieties with one variety
yielding 1967 kg ha−1 of lint cotton at 16.6 plants m−2 that
was >60 % higher than that at 5.5 plants m−2 [80].
The post-2004 yield data appear to be on the same in-

creasing trend (dashed line in Fig. 9a) as before the intro-
duction of Bt cotton when improved hybrid varieties
began entering the market. We posit that the stippled area
below the dashed line is a rough estimate of yield loss
commonly observed in ecologically disrupted cotton sys-
tems with increasing insecticide resistance (e.g., California).
Fig. 9 Average lint cotton yield across areas with rainfed cotton: a India and
south-central India during 2001–2010 (i.e., AP, GJ, KA, and MH; data from [2]).
(see bracket above Fig. 9a, e.g., [34])
Cotton in MH is predominantly rainfed, and yields before
2002 were increasing, but the level was well below the na-
tional average (Fig. 9b), while yield gains in AP were flat
(not shown). Yield stagnation occurred nationally during
the period 2005 to 2013 at about ~510-kg lint cotton ha−1

[2, 75] (see Additional file 1: Table S1). Yields in GJ and AP
peaked before 2007 and then declined sharply, while yields
in MH and KA continued to increase (Fig. 9c).

Are farmer suicides linked to Bt cotton adoption?
The reason for individual suicides is varied, and in India,
it must be viewed against the webbed nuance of social
(e.g., caste, religious and cultural), ecological, and eco-
nomic factors of Indian agricultural society (see [23]).
A tenfold greater age-standardized suicide death rate

occurs in the southern states of India compared to north-
ern states [81]. Economists examined the national suicide
data for 1997–2007 and concluded that there was no link
of farmer suicides to Bt cotton adoption [19]. Indeed, plots
of annual suicides in GJ and KA show no trend with time
(Fig. 10a) or on the national total of suicides. Suicides in
GJ were about 500 per year (<3 % of the national total),
while cotton production was 24–39 % of the national total
[37], and average yields were mostly >500-kg lint cotton
ha−1 with CV <50 % (Fig. 7b). Farmer suicide rates in KA
were high at about 2000 annually, but cotton production
was only 2–4 % of the national total with predicted
yields <500 kg and CV >50 % being very common
(Fig. 7c). In KA, these are indicators of risk not only in
cotton but also in other parts of the agriculture sector
due to low and highly variable rainfall. In AP and MH,
suicides are strongly increasing with time (Fig. 10b)
and on the national total (Fig. 10c) with the increase
beginning before the introduction of Bt cotton in
b Maharashtra (data from [19]), and c average lint yields in four states of
The stippled area is posited to be due to pesticide-induced disruption
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2002. The contributions to national cotton production
in MH (15–26 %) and AP (13–19 %) are similar, and
high-risk areas (i.e., yield <500 kg, CV >50 %) are
common in both states (see Fig. 7a, d). In MH, 90 % of
the farmers grow some rainfed cotton, and the state is
a hot spot for suicides [23]. Regressing combined an-
nual suicides in AP, GJ, KA, and MH (y) on the national
total (x) yields an increasing relationship (y = 0.90x −
7461.3, R2 = 0.823).
Revisiting the raw annual suicide data for AP, GJ, KA,

and MH during the period 2001–2010 [82], 86,607 of
549,414 suicides were by farmers, and 87 % were males
with the numbers peaking in the 30–44 age class
(Additional file 1). Details concerning cotton cultivation,
farm size, and other important factors were not reported
for each suicide, and hence, as in [19], we were forced to
aggregate the data by state. Total suicides per year per
state were regressed singly on states averages of propor-
tion of area seeded to rainfed cotton (t = 15.64), average
farm size (t = −8.90), cotton growing area (×103 ha,
t = 1.90), area of Bt cotton (×103 ha, t = 1.69), proportion
of area with Bt cotton (t = 1.13), and simulated average
yield/ha (t = −0.47) that includes the effects of weather
(see “Methods”; Additional file 1).
Excluding the proportion of area seeded to rainfed cot-

ton, linear multiple regression without transformation of
the data (Eq. 3) shows suicides decrease with increasing
farm size and yield but increase with the area under Bt
cotton cultivation (i.e., Btarea is ha ×103). Farm size and
yield are measures of poverty and risk, while the increase
in Bt area is a surrogate for high costs of Bt technology
adoption and continued use of insecticide.
suicides ¼ 14; 056 −6933:0farmsize−2:067yield
þ 0:3029 Btarea

R2 ¼ 0:76; df ¼ 36; F ¼ 38:66;
ð3Þ

The means of the independent variables and t values
for the regression coefficients are farmsize(1.568 ha,
t = − 9.93), yield(603.8 kg/ha, t = − 3.25), Btarea(743.4
ha, t = 2.84).
We note that the high variability associated with low

yield is a further dimension of risk (Fig. 7).

Factors affecting suicide rates
Economic distress can be a proximal cause of suicide,
and at least seven factors appear to have influenced this
in rainfed areas where cotton is a cash crop: (1)
weather-related intrinsic low average yields and high
variability [23] (Figs. 7 and 8); (2) increasing insecticide
use before 2002 that increased costs and yield losses due
to ecological disruption by induced pests (see text;
Fig. 9); (3) high costs of Bt cotton seed, fertilizers, in-
secticide, and ecological disruption and crop loss after
the introduction of Bt cotton (e.g., Fig. 8); (4) crop losses
due to ill adapted and possibly ineffective Bt varieties
[7, 19]; (5) increased usury costs to fund the new tech-
nologies; (6) suboptimal planting densities [80]; and (7)
the uncertain effects of weather (e.g., drought or exces-
sive rain as occurred in 2013) on pest and yield. Factors
2–5 are industry driven, and increase bankruptcy rates
as farmers assume the gamble in the monsoon [23]. As in
China, risk-averse subsistence Indian farmers likely use
greater quantities of pesticides that do not increase yield
potential but may increase ecological disruption and risk
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of crop failure [83]. Sound information to enable cotton
farmers to make informed decisions about plant dens-
ities, varieties, pest control practices, and whether to
plant Bt cotton is largely unavailable [84]. This informa-
tion gap was exploited by the insecticide industry before
the introduction of Bt cotton and by the seed and chem-
ical industry since. Technology promoters appear more
interested in instrumentalizing the technologies for
profit than in explaining the underlying causes of yield
variation or to find satisfactory cheaper alternative solu-
tions (e.g., high-density short-season cotton). Promoters
willingly offer apparent solution with little regard for
consequences. Instrumentalization of insecticides and Bt
technology and their adoption by small stakeholders in
India has hindered progress on ecologically based cotton
production [85] and has contributed to human suffering.
Economic analyses decoupled from the ecological and his-
torical roots of the production problem confound the situ-
ation, and making the claim that the market determines
the usefulness of Bt cotton and insecticide in India (and
elsewhere) shameful (sensu [56]).
Does Bt cotton have a role in Indian cotton?
Absent resistance to Bt toxin [71], quality Bt cotton pro-
vides excellent control of PBW [86] and good control of
bollworm and would appear to have a role in high-
yielding irrigated long-season cotton in India where
PBW is a chronic problem and where the marginal cost
of the technology is low. Proponents of Bt cotton claim
that it reduces the input of disruptive insecticides and
greatly reduces ecological disruption, but ultimately, this
has not proven to be the case as year 2013 insecticide use
is at year 2000 levels [69] (Additional file 1: Table S1).
Most cotton in India is rainfed, and Bt cotton provides
only prophylactic protection against late season spillover
of pink bollworm from irrigated fields (see Figs. 1, 5) and
against outbreaks of bollworm and Bt susceptible pests
caused by area-wide insecticide disruption. Bt cotton is
only a partial solution because it is ineffective against
many cotton pests and may help induce outbreaks of
others (e.g., sucking pests such as aphids, mealy bugs, jas-
sids, and plant bugs) and result in increased insecticide
use [72]. More importantly, the cost of Bt cotton as a pro-
portion of the total revenues to small farmers in rainfed
areas can be very high (Fig. 8), and effective implementa-
tion of the technology requires among other things such
as quality control of varieties, optimal planting density, re-
sistance management to preserve susceptibility to Bt [87],
and avoidance of insecticide use. These factors are major
constraints in the predominant rainfed small farm cotton
culture of south-central India.
The propensity of Indian cotton farmers to extend

the season to harvest late-season bolls is counter-
productive as PBW and bollworm infestations can then
develop and increase intra-season carryover of pests.
Short-season cottons can be high yielding and are de-
signed to set and mature bolls quickly, lessening the
need for insecticide for late-season pink bollworm (and
bollworm) infestations. Customizing the technology
developed with high-density short-season non-Bt cot-
ton for irrigated cotton in southern California [32]
(Additional file 1) appears to be a viable solution for
irrigated cotton in India [80]. Variations of this tech-
nology would also be applicable to rainfed cotton in
central and south India where rainfall is low and vari-
able and in areas of south India where a portion of
the PBW population does not enter diapause [88]. Fur-
thermore, physiologically based demographic models
(see “Methods”) as used here could provide a rapid
way of evaluating short-season cotton varieties and
control strategies for cotton pests in the different re-
gions of India and elsewhere (e.g., [89]).

Climate change effects on rainfed cotton
Climate change will affect cropping systems globally, and
in India, the generalized physiologically based plant simu-
lator INFOCROP was used to simulate the effects of cli-
mate change increases in [CO2] and temperature on
cotton [90]. Global climate model (GCM) temperature
scenarios A2, B2, and A1B that respectively project 3.95,
3.20, and 1.85 °C increases in mean temperatures with
marginal increases in rainfall were used in the study. They
found that productivity in northern India may decline
marginally while in rainfed cotton in central and southern
India productivity may either remain the same or increase.
Our results for rainfed cotton in central and southern
India, assuming a 2 °C rise in temperature and no change
in rainfall agree with their results. Our model predicts
yield increases in most areas of less than 8 % (Fig. 11a, b)
with yields decreasing in very low rainfall areas (Fig. 11c).
Cotton tolerates high temperatures, and predicted yield
increases are due to increases in temperatures during the
monsoon season that effectively increase season length
(Fig. 3a, b). The results do not change the conclusions
about the relative risks of growing rainfed cotton in south
and central India, but other high-temperature intolerant
crops could be adversely impacted.

Conclusions
In the light of this more thorough holistic agro-ecological
analysis, recommendations by international agricultural
economists [20, 44] and some Indian government official to
implement the Bt technology in cotton (and other crops)
as a solution for pest problems become questionable.
Worldwide, the use of pesticides to solve pest problems
promised short-run economic benefit but instead led
farmers onto path dependency [56, 91] that increases
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system complexity by inducing pest outbreaks (iatrogenic
effects) that may cause crop losses (idiopathic effects)
[34, 47, 92] and increase costs (see Additional file 1). In
his 1974 Nobel Prize in Economics lecture titled “The Pre-
tense of Knowledge” concerning larger economic issues,
F.A. von Hayek stated “…[economists]…have… little cause
for pride: as a profession [we] … made a mess of things”
[93]. In biotechnology, agricultural economists have
pushed forward agendas without understanding the eco-
logical bases of the crop production problem and in the
process they often wrongly filled the information gaps cre-
ated by corporate intellectual property constraints on field
research on GM crops [76]. The adherence to doctrines
that exclusively accept or select observations and disre-
gard fundamental ecological principles for supporting sci-
entific claims imposes serious limitations on their
conclusions and has been a hindrance to progress in agri-
cultural research [85]. In India and elsewhere, subsistence
farmers often lack a clear understanding of pest control is-
sues that trapped them on a pesticide treadmill (e.g., [11])
and now onto a biotechnology treadmill [33] and that ig-
nores the impending collapse of ground water levels for ir-
rigated cotton [26]. Subsistence farmers, especially in
areas with low but high variable yields can ill afford the
high costs of industrial farming technologies that contrib-
ute to bankruptcy and in some suicide cases.
In review, PBW has been a chronic severe problem in

long-season irrigated Indian cotton and can provide in-
oculum for infestations of rainfed cotton during late
summer amplifying feedback and creating an inherent
conflict between the two systems. When insecticides be-
came available for control of PBW and other pests, out-
breaks of highly damaging bollworms (and other pests)
were induced, and F1 Bt hybrid cotton that discouraged
seed saving was introduced for control. Prior to the on-
set of heavy pesticide use, bollworm was not a major
pest in Indian cotton [48]. As a percentage of the total
revenues, the costs of the Bt and insecticide technologies
decrease with increasing yield making it an acceptable
assurance option in high-yield areas, but not in areas
with low yields with high variability where the high costs
increase the risk of bankruptcy (and suicide). Suicides in
rainfed areas of south-central India are inversely related
to farm size and yields and directly related to area of Bt
cotton adoption, or more likely the combined high costs
of Bt seed and insecticide. Short-season high-density
cotton is a viable solution in both irrigated and rainfed
cotton reducing the need for the Bt technology. Even
where irrigation is available, short-season cotton could
be grown rainfed allowing the irrigation water and the
period prior to the monsoon to be used for the produc-
tion of other food crops. This would promote develop-
ment of diversified and sustainable, including organic
agriculture. A recent report shows that despite near
complete adoption of Bt cotton in India, insecticide use
was higher in 2013 than in 2000 and now targets induced
outbreaks of hemipteran insect pests [69]. Last, assuming
no change in rainfall, increases in temperature due to cli-
mate change during the monsoon season would increase
productivity <8 % in rainfed cotton in central and south
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India. The above results amply illustrate how policy
makers need holistic analyses before new technologies are
promoted in agricultural development.

Methods
Physiologically based demographic models (PBDM) of
cotton and PBW (see [30, 52, 89]) are used to explain
the underlying effects of weather and planting density
on yield and PBW dynamics at the local, state, and na-
tional levels under irrigated and rainfed conditions prior
to the introduction of insecticides and Bt cotton. Such
explanatory models reference ecological principles and
allow a relaxation of the assumption that only field ob-
servations are a valid basis for the study and manage-
ment of agricultural systems [85].
The cotton PBDM predicts prospectively the daily

time-varying age-mass structured growth dynamic of
leaves, stems, and roots, and the number-mass age
structured dynamics of fruit and yield formation [89]
(see Additional file 1). The cotton model has been used
in field studies in Arizona, California, Brazil, China,
Egypt, and Sudan [31, 34, 47, 89] reproducing the rich
biology of growth, development, and yield. The model for
India was parameterized using a cotton-growth experi-
ment conducted in 2002 on plant growth (weekly dry-
weight by subunit and yield) [47]). The model was run
using daily weather (see below) under irrigated and rainfed
conditions. A water balance model based on [94] was used
to estimate the daily effects of water stress on cotton
phenology, growth, and yield formation. Daily available
soil moisture was computed as the net of current available
water above the wilting point plus rainfall minus evapo-
transpiration as a function of leaf area index and current
weather, and runoff above the soil carrying capacity. The
moisture holding capacity in the 1 m2 × 1.5 m root zone is
assumed 1150 l with a wilting point being 450 l.
PBDMs of ten pests of cotton in Arizona-California,

including pink bollworm and bollworm (see Additional
file 1) were developed and used in analyses of their impact
on cotton growth and yield in Arizona and California
[27, 29], Brazil [95], Sudan [31], and Egypt [49] (see
Additional file 1). Only the pink bollworm model was
used in our analysis of Indian cotton. The dynamics of
PBW are intimately linked to cotton fruiting phenology,
dynamics, and age structure, but unlike bollworm and
other cotton pests, PBW attacks the standing crop with-
out affecting plant growth dynamics. A major factor in
PBW population dynamics is the evolved adaptation of
winter dormancy that enables it to bridge crop cycles. The
model captures the phenology of dormancy induction as
regulated by decreasing temperature and photoperiod,
and spring emergence from diapause as a function of
temperature [28] (Fig. 2e, see Additional file 1). The ef-
fects of one and two toxin Bt cottons on pest dynamics,
crop damage, and development of resistance in PBW and
other cotton pests have been modeled [30, 33] but were
not required in this analysis
Weather data
The landscape of India, excluding Andaman and Nicobar
Islands, was divided into 2855 lattice cells of 38 × 38 km.
Daily weather data (i.e., max-min temperature, solar radi-
ation (cal cm−2 d−1), mm rainfall, RH, runs of wind) for
each cell during 1979 to 2010 were used to run the
PBDMs. The goal was to capture the effects of weather at
a regional level, and not to model specific locations or
fields, though this is also possible. The weather data are
from the Climate Forecast System Reanalysis (CFSR) of
the United States National Centers for Environmental Pre-
diction [96]. The CFSR is a global, high-resolution, coupled
atmosphere-ocean-land surface-sea ice system that esti-
mates the state of these coupled domains [96]. The data
were downloaded using the get_cfsr_latlon function of the
R statistical package EcoHydRology [97]. Quality control
of the data was made using 1 % random samples for all
lattice cells.
Simulation studies and GIS mapping
Using the weather data to run the model, simulations
were made for all of lattice cells of India, but smaller
time- and geographic-scale studies were also made. For
example, a detailed analysis was made for the lattice cell
that includes the village of Telung Takli, Yavatmal, MH
(78° 9′ E, 20° 10′ N) (i.e., the site of the 2012 documen-
tary Bitter Seeds by filmmaker Micha Peled [98]).
Rainfed cotton is planted to germinate at the onset of

the monsoon rains of mid to late June, while irrigated
cotton is planted in mid-March to April. In the model,
the planting date of irrigated cotton is assumed a ran-
dom variable around day 90 + 15 with harvesting starting
in October that can extend as late as February–March
the following year. A planting density of 6 plants m−2 is
assumed [80, 99], with the effects on yield of lower and
higher planting densities explored in the supplemental
materials. Unless indicated, cotton is non-Bt cotton, and
yields are reported as lint cotton that is ~30 % of har-
vested seed cotton.
The model outputs numerous yearly summary vari-

ables (e.g., yield and PBW density), and all were geo-
referenced and written by year to batch files for mapping
and statistical analysis. Means, standard deviations, and
CV as a percent at each location were computed for all
variables across years. The cotton-PBW model was as-
sumed equilibrating during the first year, and hence, the
data were not used in computing the summary statistics.
The summary variables should be viewed as indices of
the time-place potential (see text).
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The simulation data were mapped using inverse dis-
tance weighting or bi-cubic spline interpolation on a
three km raster grid using the geographic information
systems (GIS) software Geographic Resources Analysis
Support System (GRASS) [100]. Red on the color bar in-
dicates high favorability, and clear indicates very low
favorability.

Analysis of farmer suicides
Controversy concerning the link of suicides of cotton
farmers to increased Bt cotton adoption is widespread in
the literature (see text), but a more nuanced approach
requires data on other potential contributing variables.
Suicide is a crime in India, and the suicide data are from
the National Crime Records Bureau of India [82]; distri-
bution of rainfed and irrigated cotton is from the Global
Agro-ecological Zones database [25]; average farm size
in hectares is for years 2008–2009; estimates of Bt cot-
ton area in India are from the International Service for
the Acquisition of Agri-biotech Applications [101], and
cotton area is from the M3-Crops Data [24]. The
weather-driven estimates of prospective cotton yields are
predicted by the model.

Additional file

Additional file 1: Supplementary materials.
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